syntactic trees are geometric objects, so they can be studied and described mathematically ; we can assign names to the various parts and descrive how the parts relate to one another.

트리를 기하학적으로 보면, 애매한 개념들을 명확한 용어로 정의해서 이야기할 수 있게 된다!

* focus on the terminology!

 

1. the parts of a tree

Branch : a line connecting two parts of a tree. 

Node : the end of a branch

branching : 노드 아래 두 개 이상 브랜치 뻗어나감 <-> non-branching : 노드 아래 브랜치 한 개

Label : the name given to a node. 모든 트리의 노드는 labeled.

            label이 될 수 있는 것 - parts of speech(N,V,P,,) & phrasal categories(NP,VP,PP,,,)

 

- Root node : the node with no line on top of it. 모든 문장은 root node하나 가지고 있고, 보통 TP node가 root node이다.

the node that dominates everything but is dominated by nothing. it's not any node's daughter.

Terminal node (/leaves) : any node with no branch underneath it. a node that dominates nothing. it's not any node's mother.

<-> non-terminal node (root node도 여기 속함) : a node that dominates something. some node's mother.

 

2. Dominance

node들은 다른 노드보다 높기도 하고 낮기도 하고, 그리고 서로 branch로 연결되어있다.

Dominance

: node A dominates node B if and only if A is higher up in the tree than B and if you can trace a line from A to B going only downwards. 노드A가 B위에 있어도 서로 연결되는 branch없다면 dominate한다고 할 수 없다. 바로 연결되어있진않아도 됨

 

Dominance is essentially a containment relation. (domination은 곧 containment(?))

(containment는 bracket으로 보면 더 잘보임; [M [N DEF][O HIJ]] - N은 DEF를 contain하고, dominate한다)

 

- Exhaustive dominance

: node A exhaustively dominates a set of terminal nodes {B,C} (+ sets are indicated with curly brackets { } ), provided

(1) it dominates all the members of the set (so that there is no member of the set that is not dominated by A) and

(2) there is no terminal node G dominated by A that is not a member of the set.

즉, { } 속 멤버들(딸)이 특정 node(엄마)가 dominate하는 노드의 전부여야한다. 덜있거나 다른 게 더 껴있으면 안됨!

+주의 : H exhaustively dominates {B, C, D}. A와 F는 terminal node가 아니라 고려대상이 아니다.

 

constituent도 이쯤에서 다시 정의할 수 있을 것이다. 

constituent : A set of terminal nodes exhaustively dominated by a particular node. 

constituent of : a member of the constituent set. 즉 dominance의 반대개념.

--> B is a constituent of A. A dominates B.

 

- Immediate dominance

: node A immediately dominates node B if there is no intervening node G that is dominated by A, but dominates B

i.e., A is the first node that dominates B. 바로 하위노드. 위의 그림에서 H가 A,F immediately dominate한다.

+ B is immediate constituent "of" A.

 

Mother : A is the mother of B if A immediately dominates B

Daughter : B is the daughter if A if B is immediately dominated by A

Sister : two nodes that share the same mother. 

grandmother까지도 개념 확장할 수도 있다 ㅋ

 

3. Precedence

precedence : node A precedes node B if and only if (1)neither A dominates B nor B dominates A

and (2) A(or some node dominating A) sister-precedes B (or some node dominating B)

 

- sister precedence : node A sister-precedes node B if and only if both are immediately dominated by the same node, and A appears to the left of B.

 

- immediate precedence : A immediately precedes B if there is no node G that follows A but precedes B.

 

+ dominate랑 precede/follow는 같이 일어날 수 없다!

+ (2)규칙 따르면 you cannot allow branches to cross인거 알 수 있다 -> no crossing branches constraint

*precedence는 terminal node에만 해당하는거 아니다. The clown kissed the doberman에서 clown이 the doberman precede한다고 말할 수 있다 

 

4. C-command

a node c-commands its sisters and all the daughters of its sisters.

= node A c-commands node B if every node dominating A also dominates B, and neither A nor B dominates the other, and A != B 즉, 한 노드는 sister관계의 노드의 모든 daughter들과 c-command라는거

 

symmetric c-command : if A c-command B and B c-commands A . sister끼리의 관계!!

asymmetric c-command : if A c-commans B but B doesn't c-command A.

 

government : c-command의 local version.

Node A governs node B if A c-commands B and there is no node G that c-commanded by A and asymmetrically c-commands B.

G라는 방해꾼없이 c-command하는 노드.

 

A governs N,B. A also c-commands N,B. N c-commands/governs A.

 

phrase-government : if A is a phrase, then G must also be a phrase. G가 phrase가 아니라면, intervener라고 볼 수 없다.

head-government : if A is a head(word), G must also be a head.

 

5. Grammatical relations

there are some traditional grammatical terms that can be defined structurally, which is called grammatical relations. ?먼솔

 

definitions of..

Subject : NP or CP daughter of TP (doer of the action같이 semantic한 것은 반례가 넘 많음!)

Object of preposition : NP daughter of PP

 

Direct object :

- NP or CP daughter of a VP (3형식 V [NP_NP/CP] / 전치사로 간목오는 경우V[NP _ NP PP] )

- The NP of CP daughter of VP that is preceded by an NP daughter of VP (4형식 경우 V [ NP _ NP [NP/CP] ]

 

Indirect object : 

- The PP daughter of VP immediately preceded by an NP daughter of VP (전치사로 간목온 경우V[NP _ NP PP])

- the NP daughter of VP immediately preceded by V(i.e., VP에서 첫번째 NP)(V [ NP _ NP [NP/CP] )

 

Obliques : 보통 영어에서는 전치사구로 mark되는데, 다른 언어에서는 suffix등을 사용해서 나타내기도 한다.

3형식 문장에서 간목 표시할때도 전치사구로 mark해서 헷갈릴 수 있는데, 차이점은 whether the PP is part of the argument structure of the verb or not. 이다

e.g., Paula gave bun to Les (indirect object) <=> Paula ate bun with jam (oblique)

'syntax' 카테고리의 다른 글

syntax ch.7 Extending X-bar to functional categories  (0) 2022.10.24
syntax ch.6 X-bar theory  (0) 2022.10.11
syntax ch.5 Binding Theory  (0) 2022.10.09
syntax ch.3 constituency, trees, and rules  (0) 2022.09.26
Syntax chapter2. Part of Speech  (0) 2022.09.18

+ Recent posts